Spis treści 2/2021; tom 75

GOSPODARKA

  • 2 Rynek żywności ekologicznej na świecie i w Polsce – Mariola Kwasek, Stanisław Kowalczyk (DOI 10.15199/65.2021.2.1)
    • Podaż i sprzedaż żywności ekologicznej na świecie, jak i w Unii Europejskiej wykazuje w ostatnich dekadach wyjątkową dynamikę wzrostu. Jest to z jednej strony konsekwencja wzrostu liczby producentów ekologicznych, jak i powierzchni użytków rolnych (UR) pod ekologicznymi uprawami, z drugiej – rosnącego zainteresowania konsumentów żywnością wysokiej jakości, do jakiej zalicza się żywność ekologiczna. W strukturze sprzedaży żywności ekologicznej zdecydowanie dominują dwa rynki: amerykański i unijny, na które przypada aż 80% światowej sprzedaży, w tym USA – 42%, kraje Unii Europejskiej – 38%. W Polsce rynek produktów ekologicznych jest niewielki, ale systematycznie rośnie. W 2018 r. polski rynek handlu detalicznego produktami rolnictwa ekologicznego oszacowano na ok. 250 mln euro, tj. 0,4% całego polskiego handlu detalicznego produktami spożywczymi. Do czynników ograniczających zakup żywności ekologicznej należą m.in. ograniczona dostępność, wysokie ceny, brak wystarczającej wiedzy na temat produktów ekologicznych.
      SŁOWA KLUCZOWE: rolnictwo ekologiczne, sprzedaż, żywność ekologiczna, jakość i bezpieczeństwo żywności
      PDF artykułu odpłatnie dostępny na stronie: https://www.sigma-not.pl/zeszyt-6467-przemysl-spozywczy-2021-2.html

TECHNIKA-TECHNOLOGIA

  • 10 Autentyczność żywności – wykrywanie zafałszowań produktów spożywczych – Wojciech Sawicki (DOI 10.15199/65.2021.2.2)
    • Zafałszowanie produktów spożywczych (food adulteration) bardzo często jest działaniem intencjonalnym (celowym i świadomym), głównie z chęci zwiększenia zysku ekonomicznego. Praca przedstawia aktualne informacje na temat metod analitycznych stosowanych do identyfikacji zafałszowań żywności. Ze względu na złożoność problemu omówiono techniki analityczne (zarówno konwencjonalne, jak i nowe) aktualnie stosowane do identyfikacji zafałszowań, obejmujące metody fizykochemiczne, oparte na analizie DNA, chromatograficzne i spektroskopowe. Pomimo postępów, jakie nastąpiły w analizie żywności nadal istnieje potrzeba opracowania odpowiednio czułych i mających szerokie zastosowanie metod analitycznych.
      SŁOWA KLUCZOWE: zafałszowanie, metody analityczne, autentyczność żywności, oszustwo
      PDF artykułu odpłatnie dostępny na stronie: https://www.sigma-not.pl/zeszyt-6467-przemysl-spozywczy-2021-2.html
      LITERATURA:

      1. Abad-García B., S. Garmón-Lobato, L.A. Berrueta, B. Gallo, F. Vicente. 2012. „On line characterization of 58 phenolic compounds in Citrus fruit juices from Spanish cultivars by high-performance liquid chromatography with photodiode-array detection coupled to electrospray ionization triple quadrupole mass spectrometry”. Talanta 99 : 213-24. DOI: 10.1016/j.talanta.2012.05.042.
      2. Acuña G., E. Ortiz-Riaño, J. Vinagre, L. García, A.M. Kettlun, J. Puente, L. Collados, M.A. Valenzuela. 2008. „Application of capillary electrophoresis for the identification of Atlantic salmon and rainbow trout under raw and heat treatment”. Journal of Capillary Electrophoresis and Microchip Technology 10 (5-6) : 93-9.
      3. Addeo F., R. Pizzano, M.A. Nicolai, S. Caira, L. Chianese. 2009. „Fast isoelectric focusing and antipeptide antibodies for detecting bovine casein in adulterated water buffalo milk and derived mozzarella cheese”. Journal of Agricultural and Food Chemistry 57 (21) : 10063-10066. DOI:10.1021/jf9020009.
      4. Agrimonti C., A. Pirondini, M. Marmiroli, N. Marmiroli. 2015. „A quadruplex PCR (qxPCR) assay for adulteration in dairy products”. Food Chemistry 187 : 58-64. DOI:10.1016/j.foodchem.2015.04.017.
      5. Aiello D., C. Siciliano, F. Mazzotti, L. Di Donna, C.M. Athanassopoulos, A. Napoli. 2020. „A rapid MALDI MS/MS based method for assessing saffron (Crocus sativus L.) adulteration”. Food Chemistry 307 : 125527. DOI: 10.1016/j.foodchem.2019.125527.
      6. Akimowicz M., J. Bucka-Kolendo. 2020. „MALDI-TOF MS – application in food microbiology”. Acta Biochimica Polonica 67 (3) : 327-332. DOI: 10.18388/abp.2020_5380.
      7. Allmann M., U. Candrian, C., Höfelein, J. Lüthy. 1993. „Polymerase chain reaction (PCR): a possible alternative to immunochemical methods assuring safety and quality of food. Detection of wheat contamination in non-wheat food products”. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung 196 (3) : 248-251. DOI:10.1007/BF01202741.
      8. Ambrose A., B.K. Cho. 2014. „A review of technologies for detection and measurement of adulterants in cereals and cereal products”. Journal of Biosystems Engineering 39 (4) : 357-365. DOI:10.5307/JBE.2014.39.4.357.
      9. Amir RM, F.M. Anjum, M.I. Khan, M.R. Khan, I. Pasha, M. Nadeem. 2013. „Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties”. Journal of Food Science and Technology 50 (5) : 1018-1023. DOI: 10.1007/s13197-011-0424-y.
      10. Anklam E., F. Gadani, P. Heinze, H. Pijnenburg, G. Van Den Eede. 2002. „Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products”. European Food Research and Technology 214 : 3-26 DOI:10.1007/s002170100415.
      11. Arlorio M., J.D. Coïsson, E. Cereti, F. Travaglia, M. Papasso, A. Martelli. 2003. „Polymerase chain reaction (PCR) of puroindoline b and ribosomal/puroindoline b multiplex PCR for the detection of common wheat (Triticum aestivum) in Italian pasta”. European Food Research and Technologies 216 : 253-258.
      12. Armani A., A. Giusti, L. Castigliego, A. Rossi, L. Tinacci, D. Gianfaldoni, A. Guidi. 2014. „Pentaplex PCR as screening assay for jellyfish species identification in food products”. Journal of Agricultural and Food Chemistry 62 (50) : 12134-12143. DOI:10.1021/jf504654b.
      13. Asensio L., I. Gonzalez, T. Garcia, R. Martin. 2007. „Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA)”. Food Control 19 (1) : 1-8. DOI: 10.1016/j.foodcont.2007.02.01.
      14. Berrini A., V. Tepedino, V. Borromeo, C. Secchi. 2005. „Isoelectric focusing identification of four freshwater fish commercially labeled »perch«”. Journal of AOAC International 88 (2) : 670-672.
      15. Bertram C.H., H. J. Andersen. 2004. „Applications of NMR in meat science”. Annual Reports on NMR Spectroscopy 53 : 157-202. DOI: 10.1016/S0066-4103(04)53003-X.
      16. Biswas K. 2013. „Authentication of herbal medicinal plant – Boerhavia diffusa L. using PCR-RFLP”. Current Trends in Biotechnology and Pharmacy 7 (3) : 725-731.
      17. Brasher M.D.R., R. Thorpe. 1998. „Isoelectric Focusing”. W Encyclopedia of Immunology (Second Edition), 1510-1514. London: Elsevier. DOI:10.1006/rwei.1999.0386.
      18. Brian J. 2018. „Food fraud: protecting European consumers through effective deterrence”. European Public Law 24 ‏(1) : 147-168.
      19. Cabañero A.I., J.L. Recio, M. Rupérez. 2006. „Liquid chromatography coupled to isotope ratio mass spectrometry:  a new perspective on honey adulteration detection”. Journal of Agricultural and Food Chemistry 54 (26), 9719-9727. DOI: 10.1021/jf062067x
      20. Calvano C.D., C.D. Ceglie, L. D’Accolti, C.G. Zambonin. 2012. „MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent”. Food Chemistry 134 (2) : 1192-1198. DOI: 10.1016/j.foodchem.2012.02.154.
      21. Camin F., R. Wehrens, D. Bertoldi, L. Bontempo, L. Ziller, M. Perini, G. Nicolini, M. Nocetti, R. Larcher. 2012. „H, C, N and S stable isotopes and mineral profiles to objectively guarantee the authenticity of grated hard cheeses”. Analytica Chimica Acta 711 : 54-9. DOI: 10.1016/j.aca.2011.10.047.
      22. Čapla J., P. Zajác, J. Čurlej, Ľ. Belej, M. Kročko, M. Bobko, L. Benešová, S. Jakabová, T. Vlčko. 2020. „Procedures for the identification and detection of adulteration of fish and meat products”. Potravinarstvo Slovak Journal of Food Sciences 14 : 978-994. DOI:10.5219/1474.
      23. Castritius S., M. Geier, G. Jochims, U. Stahl, D. Harms. 2012. „Rapid determination of the attenuation limit of beer using middle-infrared (MIR) spectroscopy and a multivariate model”. Journal of Agricultural and Food Chemistry 60 (25) : 6341-6348. DOI: 10.1021/jf3006382.
      24. Catala Á.M., R. Puchades. 2008. „Enzymic technique: enzyme-linked immunosorbent assay (ELISA)”. W Modern techniques for food authentication, 477-520. Burlington: Academic Press.
      25. Chambery A., G. del Monaco, A. Di Maro, A. Parente. 2009. „Peptide fingerprint of high quality Campania white wines by MALDI-TOF mass spectrometry”. Food Chemistry 113, 4 : 1283-1289. DOI: /10.1016/j.foodchem.2008.08.031.
      26. Chen L., X. Xiaofeng, Y. Zhihua, Z. Jinghui, C. Fang, Z. Jing. 2011. „Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy”. Food Chemistry 128 (4) : 1110-1114. DOI: 10.1016/j.foodchem.2010.10.027.
      27. Chen R.K., L.W. Chang, Y.Y. Chung, M.H. Lee, Y.C. Ling. 2004. „Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry”. Rapid Communications in Mass Spectrometry 18 (10) : 1167-1171. DOI:10.1002/rcm.1460. PMID: 15150843.
      28. Chen X., L. Lu, X. Xiong, X. Xiong, Y. Liu 2020. „Development of a real-time PCR assay for the identification and quantification of bovine ingredient in processed meat products”. Scientific Reports 10 : 2052. DOI:10.1038/s41598-020-59010-6.
      29. Cieślik E., A. Niedospial, B. Mickowska. 2008. „Wykorzystanie elektroforezy kapilarnej w analizie żywności”. Żywność Nauka Technologia Jakość 15 (2) : 5-14.
      30. Cocchi M., G. Foca, M. Lucisano, A. Marchetti, M.A. Pagani, L. Tassi, A. Ulrici. 2004. „Classification of cereal flours by chemometric analysis of MIR spectra”. Journal of Agricultural and Food Chemistry 52 (5) : 1062-1067. DOI: 10.1021/jf034441o.
      31. Cramer R. 2016. „Advances in MALDI and laser-induced soft ionization mass spectrometry”. 263-277. Cham: Springer. DOI:10.1007/978-3-319-04819-2_14
      32. Creydt M., M. Fischer. 2020. „Food authentication in real life: How to link nontargeted approaches with routine analytics?” Electrophoresis ‏20 (41) : 1665-1679, DOI: 10.1002/elps.202000030.
      33. Cristea G., A. Dehelean, C. Voica, I. Feher, R. Puscas, D. A. Magdas. 2021. „Isotopic and elemental analysis of apple and orange juice by isotope ratio mass spectrometry (IRMS) and inductively coupled plasma – mass spectrometry (ICP-MS)”. Analytical Letters 54 (1-2) : 212-226. DOI: 10.1080/00032719.2020.1743717
      34. Dalsecco L.S., R.M. Palhares, P.C. Oliveira, L.V. Teixeira, M.G. Drummond, D. de Oliveira. 2018. „A fast and reliable Real-Time PCR method for detection of ten animal species in meat products”. Journal of Food Science 83 (2) : 258-265. DOI:10.1111/1750-3841.14001.
      35. de Oliveira Mendes T., B.L.S. Porto, M.J.V. Bell, Í.T. Perrone, M.A.L. de Oliveira. 2016. „Capillary zone electrophoresis for fatty acids with chemometrics for the determination of milk adulteration by whey addition”. Food Chemistry 213 : 647-653. DOI: 10.1016/j.foodchem.2016.07.035.
      36. Demeke T., G.R. Jenkins. 2010. „Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits”. Analytical and Bioanalytical Chemistry 396 (6) : 1977-1990. DOI:10.1007/s00216-009-3150-9.
      37. Di Anibal C.V., I. Ruisánchez, M. Fernández, R. Forteza, V. Cerdà, M. Pilar Callao. 2012. „Standardization of UV-visible data in a food adulteration classification problem”. Food Chemistry 134 (4) : 2326-2331. DOI: 10.1016/j.foodchem.2012.03.100.
      38. Di Stefano V., G. Avellone, D. Bongiorno, V. Cunsolo, V. Muccilli, S. Sforza, A. Dossena, L. Drahos, K. Vékey. 2012. „Applications of liquid chromatography-mass spectrometry for food analysis”. Journal of Chromatograpfy A 1259 : 74-85. DOI: 10.1016/j.chroma.2012.04.023.
      39. Ding H.B., R.J. Xu. 2000. „Near-infrared spectroscopic technique for detection of beef hamburger adulteration”. Journal of Agricultural and Food Chemistry 48 (6) : 2193-2198. DOI: 10.1021/jf9907182.
      40. Dong H., K. Xiao Y. Xian. 2017. „Isotope ratio mass spectrometry coupled to element analyzer and liquid chromatography to identify commercial honeys of various botanical types”. Food Analytical Methods 10 : 2755-2763. DOI: 10.1007/s12161-017-0842-1.
      41. Drivelos S.A., G.A. Constantinos. 2012. „Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union”. TrAC Trends in Analytical Chemistry 40 : 38-51. DOI: 10.1016/j.trac.2012.08.003.
      42. [42] Ellis D.I., D. Broadhurst, S.J. Clarke, R. 2005. „Goodacre rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning”. Analyst 130 (12) : 1648-1654. DOI: 10.1039/b511484e.
      43. England P., W. Tang, M. Kostrzewa, V. Shahrezaei, G. Larrouy-Maumus. 2020. „Discrimination of bovine milk from non-dairy milk by lipids fingerprinting using routine matrix-assisted laser desorption ionization mass spectrometry”. Scientific Reports 10 (1) : 5160. DOI: 10.1038/s41598-020-62113-9.
      44. Ermolli M., A. Fantozzi, M. Marini, D. Scotti, B. Balla, S. Hoffmann, M. Querci, C. Paoletti, G. Van den Eede. 2006. „Food safety: screening tests used to detect and quantify GMO proteins”. Accreditation and Quality Assurance 11 : 55-57. DOI:10.1007/s00769-005-0027-2.
      45. Esteve-Romero J.S., I.M. Yman, A. Bossi, P.G. Righetti. 1996. „Fish species identification by isoelectric focusing of parvalbumins in immobilized pH gradients”. Electrophoresis 7 (8) : 1380-1385. DOI:10.1002/elps.1150170817.
      46. Fornal E., M. Montowska. 2019. „Species‐specific peptide‐based liquid chromatography‐mass spectrometry monitoring of three poultry species in processed meat products”. Food Chemistry 283 : 489-498. DOI:10.1016/j.foodchem.2019.01.074G.
      47. Gajewski K.G., Y.T Chen, Y.H. Hsieh. 2009. „Production and characterization of monoclonal antibodies specific to pangasius catfish, basa, and tra”. Journal of Food Science 74 (3) : C241-C247. DOI:10.1111/j.1750-3841.2009.01097.x.
      48. Gallardo J.M., C.G. Sotelo, C. Pineiro, R.I. Perez-Martin. 1995. „Use of capillary zone electrophoresis for fish species identification. Differentiation of flatfish species”. Journal of Agricultural and Food Chemistry 43 (5) : 1238-1244. DOI:/10.1021/jf00053a022.
      49. Garber E., C.Y. Cho, P. Rallabhandi, W.L. Nowatzke, K.G. Oliver, K.V. Venkateswaran, N. Venkateswaran. 2020. „Multi-laboratory validation of the xMAP-food allergen detection assay: A multiplex, antibody-based assay for the simultaneous detection of food allergens”. PloS One 15 (7) : e0234899. DOI:10.1371/journal.pone.0234899.
      50. Garimberti E., S. Tosi. 2010. „Fluorescence in situ hybridization (FISH), basic principles and methodology”. Methods in Molecular Biology 659 : 3-20. DOI:10.1007/978-1-60761-789-1_1.
      51. Goluch Z. 2020. „Zafałszowania suplementów diety a bezpieczeństwo zdrowotne konsumentów”. W Środowiskowe i genetyczne uwarunkowania zdrowia ludzi i zwierząt. 121-136. Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie.
      52. Gryson N. 2010. „Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review”. Analytical and Bioanalytical Chemistry 396 (6) : 2003-2022. DOI:10.1007/s00216-009-3343-2.
      53. Gupta R., D.N. Rank, C.G. Joshi. 2012. „Identification and differentiation of cattle and buffalo processed meat by duplex-PCR”. Buffalo Bulletin 31 (1) : 6-11.
      54. Haider N., I., Nabulsi, B. Al-Safadi. 2012. „Identification of meat species by PCR-RFLP of the mitochondrial COI gene”. Meat Science 90 (2) : 490-493. DOI:10.1016/j.meatsci.2011.09.013.
      55. Harrison S.M., F.J., Monahan, A. Zazzo, B. Bahar, A.P. Moloney, C.M. Scrimgeour, O.Schmidt. 2007. „Three-dimensional growth of bovine hoof as recorded by carbon stable isotope ratios”. Rapid Communications in Mass Spectrometry 21 (24) : 3971-3976. DOI: 10.1002/rcm.3309.
      56. Hilario E. 2007. „Overview of hybridization and detection techniques”. Methods in Molecular Biology 353, 27-38. DOI:10.1385/1-59745-229-7:27.
      57. Holst-Jensen A., S.B. Rønning, A. Løvseth, K.G. Berdal. 2003. „PCR technology for screening and quantification of genetically modified organisms (GMOs)”. Analytical and Bioanalytical Chemistry 375 (8) : 985-993. DOI:10.1007/s00216-003-1767-7.
      58. Hong E., S.Y. Lee, J.Y. Jeong, J.M. Park, B.H. Kim, K. Kwon, H.S. Chun. 2017. „Modern analytical methods for the detection of food fraud and adulteration by food category”. Journal of the Science of Food and Agriculture 97 (12), 3877-3896. DOI: 10.1002/jsfa.8364.
      59. Hossain M.A.M., M.E. Ali, S.B. Hamid, Asing, S. Mustafa, M.N.M. Desa, I.S. Zaidul. 2016. „Double gene targeting multiplex polymerase chain reaction-restriction fragment length polymorphism assay discriminates beef, buffalo, and pork substitution in frankfurter products”. Journal of Agricultural and Food Chemistry 64 (32) : 6343-6354. DOI:10.1021/acs.jafc.6b02224.
      60. Huang Y.C., S.S. Jeng., H.M. Chen., D.F. Hwang. 2008. „Identification of nine species of moray eel by SDS-PAGE”. The Raffles Bulletin of Zoology 19 : 123-129.
      61. Ibáñez C., T. Acunha, A. Valdés, V. García-Cañas, A. Cifuentes, C. Simó. 2016. „Capillary Electrophoresis in food and foodomics”. Methods in Molecular Biology 1483 : 471-507. DOI: 10.1007/978-1-4939-6403-1_22.
      62. Iwobi A., I. Huber, U. Busch. 2012. „The application of PCR-based methods in food control agencies – a review”. W Polymerase Chain Reaction. 173-194. Rijeka: InTech
      63. Jezek J., M. Suhaj. 2001. „Application of capillary isotachophoresis for fruit juice authentication”. Journal of Chromatography A 916 (1-2) : 185-9. DOI: 10.1016/s0021-9673(00)01078-5.
      64. Jiang H., Q. Chen. 2019. „Determination of adulteration content in extra virgin olive oil using FT-NIR spectroscopy combined with the BOSS-PLS algorithm”. Molecules 24 (11) : 2134. DOI: 10.3390/molecules24112134.
      65. Kamruzzaman M., D.W. Sun, G. ElMasry, P. Allen. 2013. „Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis”. Talanta 103 : 130-136. DOI: 10.1016/j.talanta.2012.10.020.
      66. Ke X., J. Zhang, S. Lai, Q. Chen, Y. Zhang, Y. Jiang, W. Mo, Y. Ren. 2017. „Quantitative analysis of cow whole milk and whey powder adulteration percentage in goat and sheep milk products by isotopic dilution-ultra-high performance liquid chromatography-tandem mass spectrometry”. Analytical and Bioanalytical Chemistry 409 : 213-224. DOI:10.1007/s00216-016-9987-9.
      67. Kim J., Y. Jung, Y.S. Bong, K.S. Lee, G.S. Hwang. 2012. „Determination of the geographical origin of kimchi by 1H NMR-based metabolite profiling”. Bioscience, Biotechnology, and Biochemistry 76 (9) : 1752-1757. DOI:10.1271/bbb.120356.
      68. Kim M.J., Y.M. Lee, S.M. Suh, H.Y. Kim. 2020. „Species identification of Red Deer (Cervus elaphus), Roe Deer (Capreolus capreolus), and Water Deer (Hydropotes inermis) using capillary electrophoresis-based multiplex PCR”. Foods 9 (8) : 982. DOI: 10.3390/foods9080982.
      69. Kjaersgård I.V., F. Jessen. 2003. „Proteome analysis elucidating post-mortem changes in cod (Gadus morhua) muscle proteins”. Journal of Agricultural and Food Chemistry 51 (14) : 3985-3991. DOI:10.1021/jf0340097.
      70. Kołakowski E. 2005. „Enzymy i ich wykorzystanie w modyfikacji białek żywnościowych”. W Enzymatyczna modyfikacja składników żywności. 31-100. Wydawnictwo Akademii Rolniczej w Szczecinie.
      71. Konstantinou G.N. 2017. „Enzyme-Linked Immunosorbent Assay (ELISA)”. W. Methods in molecular biology. 1592 : 79-94. Clifton, N.J: Springer Science+Business Media. DOI:10.1007/978-1-4939-6925-8_7.
      72. Kumar A., R.R. Kumar, B.D. Sharma, P. Gokulakrishnan, S.K. Mendiratta, D. Sharma. 2015. „Identification of species origin of meat and meat products on the DNA basis: a review”. Critical Reviews in Food Science and Nutrition 55 (10) : 1340-1351. DOI:10.1080/10408398.2012.693978.
      73. Kumar D., S.P. Singh, N.S. Karabasanavar, R. Singh, V. Umapathi. 2014. „Authentication of beef, carabeef, chevon, mutton and pork by a PCR-RFLP assay of mitochondrial cytb gene”. Journal of Food Science and Technology 51 (11) : 3458-3463. DOI:10.1007/s13197-012-0864-z.
      74. Kunz M.R., J. Ottaway, J.H. Kalivas, C.A. Georgiou, G.A. Mousdis. 2011. „Updating a synchronous fluorescence spectroscopic virgin olive oil adulteration calibration to a new geographical region”. Journal of Agricultural and Food Chemistry 59 (4) : 1051-1057. DOI:10.1021/jf1038053.
      75. Kuo T.H., M.S. Kuei, Y. Hsiao, H.H. Chung, C.C. Hsu, H,J, Chen. 2019. „Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry typings of edible oils through spectral networking of triacylglycerol fingerprints”. ACS Omega 4 (13) : 15734-15741. DOI:10.1021/acsomega.9b02433.
      76. Kvasnicka F. 2005. „Capillary electrophoresis in food authenticity”. Journal of Separation Science 28 (9-10) : 813-25. DOI:10.1002/jssc.200500054.
      77. Latorre C.H., R.M. C. Peña, S.G. Martín, J.B. García. 2013. „A fast chemometric procedure based on NIR data for authentication of honey with protected geographical indication”. Food Chemistry 141 (4) : 3559-3565. DOI: 10.1016/j.foodchem.2013.06.022.
      78. Lecrenier M., Q. Ledoux, G. Berben, O. Fumiere, C. Saegerman, V. Baeten P. Veys. 2014. „Determination of the ruminant origin of bone particles using fluorescence in situ hybridization (FISH)” Scietific Reports 4 : 5730. DOI:10.1038/srep05730.
      79. Lin C.C., L.L. Fung, P.K. Chan, C.M. Lee, K.F. Chow, S.H. Cheng. 2014. „A rapid low-cost high-density DNA-based multi-detection test for routine inspection of meat species”. Meat Science 96 (2) : 922-929. DOI:10.1016/j.meatsci.2013.09.001.
      80. Lin W.F., D.F. Hwang. 2008. „A multiplex PCR assay for species identification of raw and cooked bonito”. Food Control 19 (9) : 879-885. DOI: 10.1016/j.foodcont.2007.08.015
      81. Liu W., X. Wang, J. Tao, B. Xi, M. Xue, W. Sun. 2019. „A Multiplex PCR assay mediated by universal primers for the detection of adulterated meat in muton”. Journal of Food Protection 82 (2) : 325-330. DOI:10.4315/0362-028X.JFP-18-302.
      82. Maddocks S., R. Jenkins. 2017. Understanding PCR. A practical bench-top guide. London: Academic Press.
      83. Mafra I, I.M.P.L.V.O. Ferreira, M.B.P.P. Oliveira. 2008. „Food authentication by PCR-based methods”. European Food Research and Technology = Zeitschrift fur Lebensmittel-untersuchung und -Forschung 227 (3) : 649-665 DOI:10.1007/s00217-007-0782-x.
      84. Manning L., J.M. Soon. 2014. „Developing systems to control food adulteration”. Food Policy 49, 23-32. DOI:10.1016/j.foodpol.2014.06.005.
      85. Manso M.A., T.M. Cattaneo, S. Barzaghi, C. Olieman, R. López-Fandiño. 2002. „Determination of vegetal proteins in milk powder by sodium dodecyl sulfate-capillary gel electrophoresis: interlaboratory study”. Journal of AOAC International 85 (5) : 1090-1095. DOI:10.1093/jaoac/85.5.1090.
      86. Martinez I., F.T. Jakobsen. 2004. „Application of proteome analysis to seafood authentication”. Proteomics 4 (2) : 347-354. DOI:10.1002/pmic.200300569.
      87. Mayer H.K. 2005. „Milk species identification in cheese varieties using electrophoretic, chromatographic and PCR techniques”. International Dairy Journal 15 (6-9) : 595-604. DOI:10.1016/j.idairyj.2004.10.012.
      88. Mazzei P., A. Piccolo, M. Brescia, E. Caprio. 2020. „Assessment of geographical origin and production period of royal jelly by NMR metabolomics”. Chemical and Biological Technologies in Agriculture 7 : 24. DOI:10.1186/s40538-020-00190-8.
      89. Mazzeo M.F., B.D. Giulio, G. Guerriero, G. Ciarcia, A. Malorni, G.L. Russo, R.A. Siciliano. 2008. „Fish authentication by MALDI-TOF mass spectrometry”. Journal of Agricultural and Food Chemistry 56 (23) : 11071-11076. DOI:10.1021/jf8021783.
      90. Meza-Márquez O.G., T. Gallardo-Velázquez, G. Osorio-Revilla. 2010. „Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef”. Meat Science 86 (2) : 511-519. DOI:10.1016/j.meatsci.2010.05.044.
      91. Montowska M., E. Pospiech. 2007. „Species identification of meat by electrophoretic methods”. Acta Scientiarum Polonorum : Technologia Alimentaria 6 (1) : 5-16.
      92. Montowska M., E. Pospiech. 2013. „Species-specific expression of various proteins in meat tissue: proteomic analysis of raw and cooked meat and meat products made from beef, pork and selected poultry species”. Food Chemistry 136 (3-4) : 1461-1469. DOI:10.1016/j.foodchem.2012.09.072.
      93. Mossoba M.M., H. Azizian, A.R. Fardin-Kia, S.R. Karunathilaka, J.K.G. Kramer. 2017. „First application of newly developed FT-NIR spectroscopic methodology to predict authenticity of extra virgin olive oil retail products in the USA”. Lipids 52 (5) : 443-455. DOI:10.1007/s11745-017-4250-5.
      94. Murens M. 2003. „Spectrophotometric techniques”. W: Food authenticity and traceability. 184-196. Abington” Woodhead Publishing.
      95. Navarro-Pascual-Ahuir M., M.J. Lerma-García, E.F. Simó-Alfonso, J.M. Herrero-Martínez. 2015. „Rapid differentiation of commercial juices and blends by using sugar profiles obtained by capillary zone electrophoresis with indirect UV detection”. Journal of Agricultural and Food Chemistry 63 (10) : 2639-46. DOI: 10.1021/acs.jafc.5b00122.
      96. Nebola M., G. Borilova, J. Kasalova. 2010. „PCR-RFLP analysis of DNA for the differentiation of fish species in seafood samples”. Bulletin of the Veterinary Institute in Pulawy 54 (1) : 49 – 53.
      97. Nestle. 2016. Food fraud prevention. Vevey: Nestec Ltd. https://www.nestle.com/sites/default/files/asset-library/documents/library/documents/suppliers/food-fraud-prevention.pdf (dostęp: 01.2021).
      98. Netzer K.O. 1999. „Hybridization methods (Southern and Northern Blotting)”. W: Techniques in molecular medicine. Springer lab manual. 126-147. Berlin, Heidelberg: Springer. DOI:10.1007/978-3-642-59811-1_10.
      99. Nicholas M.W., K. Nelson. 2013. „North, south, or east? Blotting techniques”. The Journal of Investigative Dermatology 133 (7) : e10. DOI:.org/10.1038/jid.2013.216.
      100. Nicolaou N., Y. Xu, R. Goodacre. 2011. „MALDI-MS and multivariate analysis for the detection and quantification of different milk species”. Analytical and Bioanalytical Chemistry 399 10 : 3491-3502. DOI: 10.1007/s00216-011-4728-6.
      101. Nöhle U. 2017 Food fraud—Lebensmittelbetrug in Zeiten der Globalisierung. Hamburg: Behr’s Verlag,
      102. Nollet L.M.L. 2020. „MALDI-TOF-MS analysis of foods”. W Proteomics for food authentication. 94-101. Boca Raton: CRC Press.
      103. Núñez O., P. Lucci. 2020. „Application of liquid chromatography in food analysis”. Foods 9 (9) : 1277. DOI: 10.3390/foods9091277.
      104. Ortea I., B. Cañas, P. Calo-Mata, J. Barros-Velázquez, J.M. Gallardo. 2010. „Identification of commercial prawn and shrimp species of food interest by native isoelectric focusing”. Food Chemistry 121 (2) : 569-574. DOI:10.1016/j.foodchem.2009.12.049.
      105. Panosyan A.G., G. Mamikonyan, M. Torosyan, A. Abramyan, A. Oganesyan, E.S. Gabrielyan, A. Grigoryants, S. Mkhitaryan, B.V. Lapin. 2002. „Determination of phenolic aldehydes in cognacs and wines by capillary electrophoresis: New cognac quality markers”. Journal of Analytical Chemistry 57 (4) : 356-361. DOI: 10.1023/A:1014914701477.
      106. Pecchioni N., P. Faccioli, A.M. Stanca, V. Terzi. 1996. „Molecular markers for genotype identification in small grain cereals.Molecular markers for genotype identification in small grain cereals”. Journal of Genetics & Breeding 50 (3) : 203-219.
      107. Piasentier E., R. Valusso, F. Camin, G. Versini, 2003. „Stable isotope ratio analysis for authentication of lamb meat”. Meat Science 64 (3) : 239-247. DOI: 10.1016/S0309-1740(02)00183-3.
      108. Pineiro C., J. Barros-Velazquez, R.I. Perez-Martin, I. Martinez, T. Jacobsen, H. Rehbein, R. Kundiger, R. Mendes, M. Etienne, M. Jerome, A. Craig, I.M. Mackie, F. Jessen. 1999. „Development of sodium dodecyl sulfate- polyacrylamide gel electrophoresis reference method for the analysis and identification of fish species in raw and heat-processed samples: A collaborative study”. Electrophoresis 20: 1425-1432.
      109. Pizzano R., E. Salimei. 2014. „Isoelectric focusing and ELISA for detecting adulteration of donkey milk with cow milk”. Journal of Agricultural and Food Chemistry 62 (25) : 5853-5858. DOI:10.1021/jf5025533.
      110. Przetaczek-Rożnowska I., M. Rosiak. 2011. „Wykrywanie zafałszowań żywności”. Przemysł Spożywczy 2 (65) : 20-24.
      111. Rahmati S., N.M. Julkapli, W.A. Yehye, W.J. Basirun, 2016. „Identification of meat origin in food products-A review”. Food Control 68 : 379-390. DOI:10.1016/j.foodcont.2016.04.013.
      112. Rasmussen Hellberg, R.S., M.T. Morrissey, R.H. Hanner. 2010. „A multiplex PCR method for the identification of commercially important salmon and trout species (Oncorhynchus and Salmo) in North America”. Journal of Food Science 75 (7) : C595-C606. DOI:10.1111/j.1750-3841.2010.01752.x
      113. Resetar D., M. Marchetti-Deschmann, G. Allmaier, J.P. Katalinic, S. Kraljevic. 2016. „Matrix assisted laser desorption ionization mass spectrometry linear time-of-flight method for white wine fingerprinting and classification”. Food Control 64 : 157-164. DOI:10.1016/j.foodcont.2015.12.035.
      114. Robson, K., M. Dean, S. Haughey, C. Elliott. 2021. „A comprehensive review of food fraud terminologies and food fraud mitigation guides” Food Control 120 : 107516 DOI: 10.1016/j.foodcont.2020.107516.
      115. Röder M., W. Weber. 2016. „Allergenanalytik”. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 59 (7) : 889-899. DOI:10.1007/s00103-016-2370-3.
      116. Rossmann A. 2001. „Determination of stable isotope ratios in food analysis”. Food Reviews International 17 (3) : 347-381, DOI: 10.1081/FRI-100104704
      117. Rozporządzenie (WE) nr 178/2002 Parlamentu Europejskiego i Rady z dnia 28 stycznia 2002 r. ustanawiające ogólne zasady i wymagania prawa żywnościowego, powołujące Europejski Urząd ds. Bezpieczeństwa Żywności oraz ustanawiające procedury w zakresie bezpieczeństwa żywności.
      118. Różycki M., E. Chmurzyńska, E. Bilska-Zając, J. Karamon, T. Cencek. 2018. „Isoelectric focusing of proteins in the ph gradient as a tool for identification of species origin of raw meat”. Journal of Veterinary Research 62 (2) : 151-159. DOI:10.2478/jvetres-2018-0024.
      119. Sajali N., S.C. Wong, S. Abu Bakar, N.F. Khairil Mokhtar, Y.N. Manaf, M.H. Yuswan, M.N. Mohd Desa. 2020. „Analytical approaches of meat authentication in food”. International Journal of Food Science and Technology. (in press) DOI: 10.1111/ijfs.14797
      120. Salihah N.T., M.M. Hossain, H. Lubis, M.U. Ahmed. 2016. „Trends and advances in food analysis by real-time polymerase chain reaction”. Journal of Food Science and Technology 53 (5) : 2196-2209. DOI:10.1007/s13197-016-2205-0
      121. Santoro V., F. Dal Bello, R. Aigotti, D. Gastaldi, F. Romaniello, E. Forte, M. Magni, C. Baiocchi, C Medana. 2018. „Characterization and determination of interesterification markers (triacylglycerol regioisomers) in confectionery oils by liquid chromatography-mass spectrometry”. Foods 7 : 23. DOI: 10.3390/foods7020023.
      122. Sassi M., S. Arena, A. Scaloni. 2015. „MALDI-TOF-MS platform for integrated proteomic and peptidomic profiling of milk samples allows rapid detection of food adulterations”. Journal of Agricultural and Food Chemistry 63 : 6157-6171. DOI: 10.1021/acs.jafc.5b02384.
      123. Sawicki W. 2016. Techniki molekularne w analizie zafałszowań żywności. Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie.
      124. Sawicki W. 2017. „Autentyczność jako wyznacznik bezpieczeństwa żywności”. W Żywność dla przyszłości. 475-482. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu.
      125. Sawicki W. 2017. „Identification of horse meat in food products in the Polish market”. Towaroznawcze Problemy Jakości 51 (2) : 58-66. DOI: 10.19202/j.cs.2017.02.05.
      126. Sawicki W. 2009. „Techniki molekularne w identyfikacji zafałszowań żywności”. Przemysł Spożywczy 63 (4) : 28-31.
      127. Sawicki W., A. Lepczyński, M. Ożgo, A. Roszkiewicz. 2020. „Ocena zastosowania spektrometrii mas MALDI-ToF-MS do identyfikacji autentyczności dorsza bałtyckiego (Gadus morhua callarias) i dorsza czarnego (Pollachius virens)”. W Środowiskowe i genetyczne uwarunkowania zdrowia ludzi i zwierząt, 121-136. Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie.
      128. Sawicki W., A. Żych. 2019. „Metoda PCR w ocenie zafałszowań składu surowcowego produktów mięsnych ze strusia (Struthio camelus)”. Żywność. Nauka. Technologia. Jakość 2 (119) : 32-42, DOI: 10.15193/zntj/2019/119/283.
      129. Sawicki W., D. Klein. 2011. „Sea fish and shellfish authentication issues”. W Environmental effects on seafood availability, safety and quality, 275-294. Boca Raton: CRC Press, Taylor&Francis Group.
      130. Sawicki W., E. Daczkowska-Kozon, B. Kwiatkowska, W. Dabrowski, H. Herring. 2010. „Identyfikacja roznych gatunkow ryb i bezkregowcow morskich technikami biologii molekularnej”. Medycyna Weterynaryjna 66 (3) : 182-187.
      131. Sawicki W., J. Żochowska-Kujawska. 2016. „Detection of meat adulteration in veal sausages using a multiplex PCR technique”. Biotechnology and Food Science 80 (1) : 19-27.
      132. Schnepf A., M. Kolb, A. Seubert, M. Läubli. 2020. Monograph: practical ion chromatography. Herisau: Metrohm.
      133. Sentandreu M.Á., E. Sentandreu. 2014. „Authenticity of meat products: Tools against fraud”. Food Research International 60, 19-29. DOI: 10.1016/j.foodres.2014.03.030.
      134. Sharma G.M. 2012. „Immunoreactivity and detection of wheat proteins by commercial ELISA kits”. Journal of AOAC International 95 (2) : 364-371. DOI:10.5740/jaoacint.sge_sharma.
      135. Shen C.H. 2019. „Amplification of nucleic acids”. W Diagnostic Molecular Biology. 215-247. London: Academic Press. DOI:10.1016/B978-0-12-802823-0.00009-2.
      136. Spínola V., J. Pinto, P.C. Castilho. 2015. „Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MS(n) and screening for their antioxidant activity”. Food Chemistry 173 : 14-30. DOI: 10.1016/j.foodchem.2014.09.163.
      137. Spychaj A., P.E. Mozdziak, E. Pospiech. 2009. „PCR methods in meat species identification as a tool for the verification of regional and traditional meat products”. Acta Scientiarum Polonorum Technologia Alimentaria 8 (2) : 5-20.
      138. Stepnowski P., E. Synak, B. Szafranek, Z. Kaczyński. 2010. Techniki separacyjne. Wydawnictwo Uniwersytetu Gdańskiego.
      139. Stoyanov A. 2012. „IEF-based multidimensional applications in proteomics: toward higher resolution”. Electrophoresis 33 (22) : 3281-3290. DOI:10.1002/elps.201200221
      140. Stój A. 2011. „Metody wykrywania zafałszowań win”. Żywność. Nauka. Technologia. Jakość 75 (2) : 17-26.
      141. Straadt I.K., M.D. Aaslyng, H.C. Bertram. 2011. „Assessment of meat quality by NMR – an investigation of pork products originating from different breeds”. Magnetic Resonance in Chemistry 49 (supp S1) : S71-S78. DOI: 10.1002/mrc.2805.
      142. Su W.H., H.J. He, D.W. Sun. 2017. „Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review”. Critical Reviews in Food Science and Nutrition 57 (5) : 1039-1051. DOI: 10.1080/10408398.2015.1082966.
      143. Suhaj M., M. Koreňovská. 2008. „Study of some European cheeses geographical traceability by pattern recognition analysis of multielemental data”. European Food Research and Technology 227 : 1419-1427 DOI : 10.1007/s00217-008-0861-7
      144. Sujka J., M. Reder, P. Koczon. 2012. „Zastosowanie spektroskopii FT-IR do identyfikacji wybranych napojów spirytusowych”. Bromatologia i Chemia Toksykologiczna 45 3 : 383-389.
      145. Sun S., B. Guo, Y. Wei. 2016. „Origin assignment by multi-element stable isotopes of lamb tissues”. Food Chemistry 213 : 675-681. DOI: 10.1016/j.foodchem.2016.07.013.
      146. Surzycki S. 2000. „Nucleic acid hybridization. a theoretical consideration”. W Basic techniques in molecular biology. Springer lab manuals. 221-232. Berlin, Heidelberg: Springer. DOI:10.1007/978-3-642-56968-5_10.
      147. Suto M., H. Kawashima. 2019. „Compound specific carbon isotope analysis in sake by LC/IRMS and brewers’ alcohol proportion”. Scientific Reports 9 (1) :17635. DOI: 10.1038/s41598-019-54162-6.
      148. Tepedino V., A. Berrini, V. Borromeo, D. Gaggioli, C. Cantoni, P. Manzoni, Secchi C. 2001. „Identification of commercial fish species belonging to the orders pleuronectiformes and gadiformes: library of isoelectric focusing patterns”. Journal of AOAC International 84 (5) : 1600-1607.
      149. Thienes C.P., J. Masiri, L.A. Benoit, B. Barrios‐Lopez, S.A. Samuel, R.A. Krebs, M. Samadpour. 2019. „Quantitative detection of beef contamination in cooked meat products by ELISA”. Journal of AOAC International 102 : 898-902. DOI:10.5740/jaoacint.18-0193.
      150. Trimboli F., N. Costanzo, V. Lopreiato, C. Ceniti, V.M. Morittu, A. Spina, D. Britti. 2019. „Detection of buffalo milk adulteration with cow milk by capillary electrophoresis analysis”. Journal of Dairy Science 102 (7) : 5962-5970. DOI: 10.3168/jds.2018-16194
      151. Truonghuynh, H.T., G.B. Li, G.K. Jaganathan. 2020. „Isotope analysis as a means of tracing aquatic products authenticity, source and geographic origins”. Italian Journal of Food Science 32 (3) : 517-527. DOI: 10.14674/IJFS-1778.
      152. Ulrich S., P.M. Beindorf, B. Biermaier, K. Schwaiger, M. Gareis, C. Gottschalk. 2017. „A novel approach for the determination of freshness and identity of trouts by MALDI-TOF mass spectrometry”. Food Control 80 : 281-289, DOI: 10.1016/j.foodcont.2017.05.005.
      153. Valenzuela M.A., N. Gamarra, L. Gómez, A.M. Kettlun, M. Sardón, L. Pérez, M.J. Vinagre, N.A. Guzman. 1999. „A comparative study of fish species identification by gel isoelectrofocusing two-dimensional gel electrophoresis, and capillary zone electrophoresis”. Journal of Capillary Electrophoresis and Microchip Technology 6 (3-4) : 85-91.
      154. Vallejo-Cordoba B, A.F. González-Córdova. 2010. „Capillary electrophoresis for the analysis of contaminants in emerging food safety issues and food traceability”. Electrophoresis 1 (13) : 2154-64. DOI: 10.1002/elps.200900777.
      155. Vallejo-Cordoba B., A.F. González-Córdova, M.A. Mazorra-Manzano, R. Rodríguez-Ramírez. 2005. „Capillary electrophoresis for the analysis of meat authenticity”. Journal of Separation Science 28 (9-10) : 826-36. DOI: 10.1002/jssc.200500013.
      156. Vaňha J., A. Hinková, M. Sluková, F. Kvasnička. 2009. „Detection of plant raw materials in meat products by HPLC”. Czech Journal of Food Sciences 27 (4) : 234-239. DOI:10.17221/205/2008-CJFS
      157. Vinci G., R. Preti, A. Tieri, S. Vieri. 2013. „Authenticity and quality of animal origin food investigated by stable-isotope ratio analysis”. Journal of the Science of Food and Agriculture 93 (3) :439-48. DOI: 10.1002/jsfa.5970.
      158. von Büren M., M. Stadler, J. Lüthy. 2001. „Detection of wheat adulteration of spelt flour and products by PCR”. European Food Research and Technology 212 : 234-239. DOI:10.1007/s002170000230.
      159. Wang J., M.M. Kliks, W. Qu, S. Jun, G. Shi, Q.X. Li. 2009. „Rapid determination of the geographical origin of honey based on protein fingerprinting and barcoding using MALDI TOF MS”. Journal of Agricultural and Food Chemistry 57 (21) : 10081-10088. DOI:10.1021/jf902286p.
      160. Wang J., Q.X. Li. 2011. „Chemical composition, characterization, and differentiation of honey botanical and geographical origins”. Advances in Food and Nutrition Research 62 : 89-137. DOI:10.1016/B978-0-12-385989-1.00003-X.
      161. Wasinski B., J. Osek. 2013. „Nowoczesne metody badania składu gatunkowego mięsa i produktów mięsnych”. Medycyna Weterynaryjna 69 (6) : 348-352.
      162. Weng S., B. Guo, P. Tang, X. Yin, F. Pan, J. Zhao, L. Huang, D. Zhang. 2020. „Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 230 : 118005. DOI: 10.1016/j.saa.2019.118005.
      163. Winkler-Moser J.K., M. Singh, K.A. Rennick, E.L. Bakota, G. Jham, S.X. Liu, S.F. Vaughn. 2015. „Detection of corn adulteration in brazilian coffee (Coffea arabica) by tocopherol profiling and near-infrared (NIR) spectroscopy”. Journal of Agricultural and Food Chemistry 63 (49) : 10662-10668. DOI: 10.1021/acs.jafc.5b04777.
      164. Wisniewski A., A. Buschulte. 2019. „How to tackle food fraud in official food control authorities in Germany”. Journal of Consumer Protection and Food Safety 14 : 319-328, DOI: 10.1007/s00003-019-01228-2.
      165. Wójcicki K. 2015. „Application of NIR spectroscopy for whisky identification and determination the content of ethanol”. W: Current Trends in Commodity Science: New Trends in Food Quality, Packaging and Consumer Behavior. 69-80. Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu.
      166. Yao L., J. Lu, M. Qu, Y. Jiang, F. Li, Y. Guo, L. Wang, Y. Zhai. 2020. „Methodology and application of PCR-RFLP for species identification in tuna sashimi”. Food Science and Nutrition 8 (7) : 3138-3146. DOI:10.1002/fsn3.1552.
      167. Yeong T.J., K. Pin Jern, L.K. Yao, M.A. Hannan, S.T.G. Hoon. 2019. „Applications of photonics in agriculture sector: a review”. Molecules 24 (10) : 2025. DOI:10.3390/molecules24102025.
      168. Zafra-Gomez A., A. Garballo, L.E. García-Ayuso, J.C. Morales. 2010. „Improved sample treatment and chromatographic method for the determination of isoflavones in supplemented foods”. Food Chemistry 123 (3) : 872-877. DOI:10.1016/j.foodchem.2010.05.009.
      169. Zheng X., Y. Li, W. Wei, Y. Peng. 2019. „Detection of adulteration with duck meat in minced lamb meat by using visible near-infrared hyperspectral imaging”. Meat Science 149 : 55-62. DOI:10.1016/j.meatsci.2018.11.005
  • 16 Wykorzystanie badań eye trackingowych do oceny postrzegania wzrokowego znakowania produktów spożywczych – Maria Sielicka-Różyńska, Joanna Brzezińska (DOI 10.15199/65.2021.2.3)
    • Warstwa wizualna opakowania produktów spożywczych, czyli zawarte na nim elementy tekstowe i graficzne wywierają znaczny wpływ na podejmowane przez konsumentów decyzje nabywcze. Ustalenie odpowiedniej lokalizacji, rozmiaru oraz barwy informacji stanowiących element znakowania produktów może zapewnić większą uwagę wzrokową na te obszary, a co za tym idzie kształtować zachowania i postawy konsumentów. Z pomocą mogą przyjść badania eye trackingowe (okulograficzne), które opierają się na monitorowaniu ruchów gałek ocznych badanych osób oraz określeniu punktów skupienia wzroku. Celem artykułu jest przedstawienie istoty badań eye trackingowych, wskazanie możliwych form prezentacji pozyskanych w ten sposób danych oraz obszarów zastosowania tej techniki. Ponadto, na przykładzie przeprowadzonych przez Autorki badań okulograficznych opisano procedurę ich przygotowania i realizacji, a następnie przeanalizowano uwagę wzrokową oceniających (n=67) na wybranych elementach opakowań ciastek zbożowych
      SŁOWA KLUCZOWE: eye tracking, okulografia, uwaga wzrokowa, znakowanie, ciastka zbożowe
      PDF artykułu odpłatnie dostępny na stronie: https://www.sigma-not.pl/zeszyt-6467-przemysl-spozywczy-2021-2.html

ŻYWNOŚĆ-ŻYWIENIE

  • 22 Przyprawy – naturalne składniki żywności – Elżbieta Hać-Szymańczuk, Aneta Cegiełka, Kamil Piwowarek, Alicja Napiórkowska (DOI 10.15199/65.2021.2.4)
    • Przyprawy wchodzą w skład większości produktów spożywczych i potraw. W obrocie handlowym przyprawy dostępne są pod różnymi postaciami, zarówno jako świeże części roślin, jak i preparaty przyprawowe, np. olejki eteryczne. Scharakteryzowano właściwości oraz możliwości aplikacyjne w przemyśle spożywczym wybranych przypraw z rodziny Laminaceae: oregano, szałwii oraz rozmarynu. Przyprawy te nie tylko podkreślają smak oraz aromat potraw/ produktów spożywczych, ale również, dzięki substancjom biologicznie czynnym, wykazują właściwości m.in. hamowania rozwoju mikroorganizmów obecnych w żywności czy utleniania tłuszczów. Intensyfikują działanie układu trawiennego, pobudzając apetyt oraz wydzielanie soków trawiennych. Cechują się również właściwościami leczniczymi i wspomagającymi, mogą działać bowiem przeciwbakteryjnie, moczopędnie, rozkurczowo oraz przeciwutleniająco.
      SŁOWA KLUCZOWE: przyprawy, oregano, szałwia, rozmaryn, olejki eteryczne, utrwalanie żywności
      PDF artykułu odpłatnie dostępny na stronie: https://www.sigma-not.pl/zeszyt-6467-przemysl-spozywczy-2021-2.html
  • 27 Psychobiotyki – rola w kształtowaniu zdrowia człowieka – Iwona Szymańska, Dorota Zielińska, Anna Żbikowska, Katarzyna Marciniak-Łukasiak (DOI 10.15199/65.2021.2.5)
    • Liczne badania naukowe wykazały korzystny wpływ wielu grup mikroorganizmów probiotycznych na organizm człowieka. Szczególnie dobrze udokumentowano pozytywny wpływ szczepów probiotycznych na układ pokarmowy, zwłaszcza jelita. Jednakże, jak pokazują najnowsze doniesienia naukowe, mikroorganizmy odpowiedzialne są nie tylko za dobrostan fizyczny organizmu, ale również przyczyniają się do poprawy zdrowia psychicznego. Są to tzw. psychobiotyki, pomocne w leczeniu depresji i chorób powstałych na tle lękowym. Niektóre badania przedkliniczne wskazują na znaczącą rolę mikrobioty jelitowej w leczeniu zaburzeń neuropsychiatrycznych. Badania te ukazują także możliwość wykorzystania mikroorganizmów w procesie produkcji leków psychotropowych nowej generacji. Istnieje coraz więcej dowodów wskazujących na fakt, że mikrobiota jelitowa wywiera wpływ na fizjologię mózgu i ostatecznie na różnorodne zachowania człowieka, w tym reakcje na stres. Celem artykułu jest dokonanie przeglądu mechanizmów oraz oceny skuteczności oddziaływania wybranych psychobiotyków na zdrowie psychiczne człowieka w świetle najnowszych badań.
      SŁOWA KLUCZOWE: mikrobiota, probiotyki, oś jelitowo-mózgowa, psychobiotyki, zaburzenia psychiczne
      PDF artykułu odpłatnie dostępny na stronie: https://www.sigma-not.pl/zeszyt-6467-przemysl-spozywczy-2021-2.html
  • 33 Znaczenie glutenu w technologii żywności i jego wpływ na zdrowie konsumenta – Jagoda Kępińska-Pacelik, Wioletta Biel (DOI 10.15199/65.2021.2.6)
    • Gluten jest mieszaniną białek roślinnych, głównie gluteniny igliadyny. Występuje w ziarnach takich zbóż, jak: pszenica, jęczmień, żyto. Jest przydatny podczas wytwarzania wypieków. Zapewnia odpowiednią spoistość, elastyczność i lepkość ciasta, co sprawia, że jest szeroko wykorzystywany w przemyśle spożywczym. Gluten znajduje się nie tylko w wyrobach piekarniczych, ale również dodawany jest do przetworów mlecznych, mięs i wędlin, przypraw, sosów i koncentratów spożywczych. Stosowany jest także w suplementach diety. W nietolerancji glutenu upatruje się nową epidemię XXI wieku, ponieważ jego obecność w diecie może wywoływać nieprawidłową reakcję organizmu, objawiającą się celiakią, nadwrażliwością na gluten czy chorobą Duhringa. W przypadku zdiagnozowania celiakii konieczne jest stosowanie diety bezglutenowej przez całe życie. Powinna być zatem dietą zbilansowaną i dobrze akceptowaną. W diecie bezglutenowej wykorzystuje się tzw. bezpieczne produkty zawierające zboża i pseudozboża, wytworzone z mąki kukurydzianej, ryżowej, sojowej, gryczanej, prosa, amarantusa czy komosy ryżowej, ponieważ te rośliny naturalnie nie zawierają glutenu. Produkty bezpieczne dla uczulonych na gluten są oznakowane przekreślonym kłosie.
      SŁOWA KLUCZOWE: gluten, zboża, zdrowie, dieta
      PDF artykułu odpłatnie dostępny na stronie: https://www.sigma-not.pl/zeszyt-6467-przemysl-spozywczy-2021-2.html

WYDARZENIA

  • 32 Należy czy najlepiej?